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Abstract
We present a scheme by which projective homodyne measurement of a microwave resonator
can be used to generate entanglement between two superconducting charge qubits coupled to
this resonator. The non-interacting qubits are initialized in a product of their ground states, the
resonator is initialized in a coherent field state, and the state of the system is allowed to evolve
under a rotating wave Hamiltonian. Making a homodyne measurement on the resonator at a
given time projects the qubits into a state of the form (|gg〉 + e−iφ |ee〉)/√2. This protocol can
produce states with a fidelity as high as required, with a probability approaching 0.5. Although
the system described is one that can be used to display revival in the qubit oscillations, we show
that the entanglement procedure works at much shorter timescales.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Central to the construction of any useful Quantum Information
device will be an array of quantum systems whose collective
quantum state can be prepared, measured or otherwise
manipulated [1]. For the case of two-level systems—qubits—
and in the solid state arena, small superconducting grains
coupled to bulk superconductors via Josephson junctions, often
referred to as Cooper-pair boxes, have been shown to be
promising candidates for playing the role of the qubits [2].
Quantum state control has been demonstrated in single qubit
devices through coherent or Rabi oscillations, observed with
readout schemes consisting of either a single electron transistor
(SET) [2] or quantronium [3] circuit coupled to the qubit being
measured. Corresponding single qubit quantum state control
results have also been obtained in superconducting flux qubit
devices [4].

More recently, the coupling of such superconducting qubit
devices has also been achieved [5–7]. Such coupling generates
entangled two-qubit states, which is both of vital importance
to possible quantum computing applications [1], and also of
interest in testing the fundamental limits of quantum mechanics
in macroscopic objects [8, 9]. The two charge qubits of
Pashkin et al [5] were capacitively coupled, and each qubit

independently measured with SET readouts. The resulting
two-body density matrix, was consistent with the existence
of non-classical correlations between the two qubits, although
decoherence limited the fidelity of the CNOT gate which
was attempted in the two qubit device [10]. Entanglement
between superconducting flux qubit devices was reported by
Berkley et al [6]. A more recent experiment [7] showed
antiphase oscillation of a two qubit system, and detailed
quantum state tomography established entanglement with 87%
fidelity between two macroscopic superconducting charge-
phase qubit devices [11]. Significant progress has also been
made coupling superconducting charge [12–14] and flux [15]
qubits to a quantum resonator mode, demonstrating effects
such as the AC Stark effect and resolving individual photon
number states in the resonator. As well as being an essential
part of any quantum computing protocol, the generation of
entanglement is necessary for the demonstration of a Bell’s
inequality violation [16], which would prove unequivocally
that the system cannot be described classically [17].

In all these experiments the coupling of the superconduct-
ing qubit to its measurement device has been shown to be one
of the central aspects controlling its decoherence. Very long
relaxation times were observed in the experiments of Wall-
raff et al [12–14] in which the Cooper-pair box was coupled

0953-8984/08/075211+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/7/075211
mailto:denzil.rodrigues@nottingham.ac.uk
mailto:catherine.jarvis@bristol.ac.uk
http://stacks.iop.org/JPhysCM/20/075211


J. Phys.: Condens. Matter 20 (2008) 075211 D A Rodrigues et al

to a microwave stripline resonator, but not to any other mea-
surement device. Measurement of a resonator dispersively
coupled to a superconducting qubit has thus been shown to
provide an excellent ‘readout’ system for the superconduct-
ing qubit [13, 18]. Quantum resonator modes therefore have
real potential for both coupling and readout of superconduct-
ing qubits.

In this paper we present a measurement protocol by
which entanglement may be generated between two such
superconducting qubits, which are coupled only through
a common stripline resonator. We show that projective
homodyne measurement on the resonator field may perform
a projective measurement on the coupled qubit/field system,
resulting in the generation of entangled states of the two
qubits. It is interesting that there is assumed to be no direct
coupling between the qubits themselves, and it is the act
of projective measurement on the field which creates the
entangled state. Our scheme for generation of entanglement
is therefore analogous to the Knill, Laflame, Milburn or
‘KLM’ protocol [19] to generate entanglement of photons in
linear quantum optics through projective measurement. In
the same way, our scheme uses measurement to generate
entanglement between qubits which have no other direct
qubit–qubit interaction. The analysis presented here will be
relevant for other physical systems consisting of two-level
systems coupled via an harmonic mode such as atom chips or
nanomechanical systems.

Our work builds upon the extensive theoretical study of
Meunier et al [20] of collapse and revival phenomena of two-
level quantum systems coupled to a single quantized radiation
mode. As is stressed by Meunier et al [20] the rich variety of
quantum phenomena displayed by the ‘one qubit one mode’
system is well known from Quantum Optics where the role
of the two-level system is played by a two-level (Rydberg)
atom [21]. A particularly striking example of these is the
collapse and subsequent revival of the initial Rabi oscillations
in the atom (qubit) section of the Hilbert space when the initial
radiation field is in a coherent state |α〉. Remarkably, as was
first noticed by Gea-Banacloche [22], at times t , between the
collapse time tc and revival time tr, when there are no Rabi
oscillations, it is the radiation field part of the wavefunction
which manifests complex quantum behaviour. Following these
insights we have studied the time evolution of the two qubit
system coupled to a radiation mode. We show that simple
projective homodyne measurements on the radiation field,
at times between collapse and revival of multi-qubit Rabi
oscillations, may be used to obtain interesting entangled states
of the two qubits.

The paper is structured as follows. In section 2 we
introduce the two qubit version of the Jaynes–Cummings
model [23, 24] and, in the interest of clarity, recall the current
state of understanding of the complex evolution with time of a
combined qubit and field state. We also discuss the expected
results of a homodyne measurement on the field variable of
our system. The main results of this paper are developed in
section 3 where we describe and analyse a simple experimental
protocol which involves homodyne measurements on the field
variable and results in heralded maximally entangled states of
the qubits. Our general conclusions are presented in section 4.

2. Jaynes–Cummings model for two qubits coupled
to a resonator

The salient features of one qubit coupled to a single mode
of the radiation field can be described approximately by
the Jaynes–Cummings model [23], much studied in quantum
optics. This model has generated a great deal of interest in the
past as it exhibits interesting behaviour [21] and it has been
used to describe quantum correlation.

In this paper we consider two charge qubits each coupled
capacitively to a stripline resonator using the two qubit Jaynes–
Cummings model [24]. If the qubits are placed at an antinode
of the fundamental harmonic mode of the resonator, then we
can describe the system as a pair of two-level systems coupled
to a simple harmonic oscillator. The charging energy of the
qubits and their coupling to the resonator can be controlled by
the application of magnetic and electric fields [2]. If these are
tuned so that the qubits are close to resonance with the field we
can describe the system using a rotating wave Hamiltonian,

Ĥ = h̄ω(â†â + 1
2 )+

(
E1σ̂

z
1 + E2σ̂

z
2

)

+ h̄
2∑

i=1

λi
(
âσ̂+

i + â†σ̂−
i

)
(1)

where

σ̂ z = |e〉〈e| − |g〉〈g|, σ̂+ = |e〉〈g|, σ̂− = |g〉〈e|,
(2)

â† and â are the creation and annihilation operators of photons
with frequency ω, E1,2 are the charging energies of the qubits,
and λ1,2 the resonator–qubit coupling terms. We consider the
system to be exactly on resonance, for simplicity, and also
assume that the Cooper-pair boxes have equal charging energy,
(E1,2 = E) and coupling to the resonator, (λ1,2 = λ). In
the rotating wave approximation, we notice that states with
m excited qubits and n photons only couple to states with
m ′ + n′ = m + n. This means that we can describe the system
as an infinite set of non-interacting four-level sub-systems all
labelled by n + m. We can find the solution of each of these
sub-systems analytically, and then sum over these to obtain the
state of the whole system.

For an initial state,
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)
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]
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Figure 1. Revival of the initial state of the qubit system. The curve
shows the probability that the qubits are in the state |gg〉 after tracing
out the resonator. The initial qubit oscillations rapidly decay,
indicating the qubits are in a mixed state. The revival of the
oscillations indicates that the information about the qubit states has
been transferred back to the qubits from the resonator. The main
revival occurs at tr = 2π

√
n̄/λ, with a partial revival at tr/2. We have

chosen ω = λ = 1 and n̄ = 30.

where the state |eg, n〉 is the tensor product of a Fock state |n〉
of the photons and the state of the qubits which is either excited
(e) or ground (g) for each qubit. For brevity we only discuss
the solution for the case where the qubits both start in their
ground state, but we note that the solution with a general initial
condition is generically similar. The initial state of the field is
determined by the coefficients Cn , which for a coherent state
|α〉 are given by,

Cn = e−|α|2/2 α
n

√
n! , (5)

with the phase, θ , and average occupation, n̄, of the coherent
state determined by α = √

n̄e−iθ .
In spite of its relative simplicity equation (4) describes a

wide range of interesting phenomena. A much studied example
of these is the collapse and revival of Rabi oscillations. In
this paper we shall be concerned with phenomena at times
where there are no Rabi oscillations. To illustrate the generic
behaviour of |ψ(t)〉 in equation (4) we shall now comment
on the qubit and the photon sector separately. If we consider
the state of the qubits after tracing out the field state, the
probability of the qubits being in the state |gg〉 is,

Pgg(t) = 〈gg|ρQ(t)|gg〉 =
∞∑

n=0

|〈gg, n|ψ(t)〉|2 (6)

where ρQ(t) is the reduced density matrix at a certain time for
the qubits when the field has been traced out. In agreement
with Iqbal et al [25], we find the results depicted in figure 1.
Evidently we see that initial oscillations of the qubit states
decay rapidly, after which the qubit is in a mixed state.
After a period of time, the oscillations revive, indicating the
information about the qubits’ initial state has returned to the
qubits from the field. We see a larger revival at the revival
time, tr = 2π

√
n̄/λ, which is proceeded by a smaller revival at

tr/2. The smaller revival is not seen for the one qubit case and
this is due to the extra frequency introduced by the addition of
the second qubit.

So far we have studied the time evolution of the reduced
density matrix of the qubits. To investigate the radiation field
it is useful to calculate the Q function [26],

Q(α, t) = 〈α|ρF (t)|α〉 (7)

where ρF (t) is the reduced density matrix at a certain time for
the radiation field when the qubits have been traced out. The
values of Q(α, t) in the complex alpha plane at fixed times are
shown in figure 2.

The Q function shows a set of three ‘blobs’, each
representing a mesoscopic wavepacket of the cavity field.
As a function of time the three wavepackets move around
the complex plane and follow the circular path of radius√

n̄. Although the wavepackets all begin in the same place,
they evolve with different frequencies, so the states begin to
separate. After a period of time, depending on the differences
between the frequencies, the different sub-distributions are
separated by more than their diameter and can be easily
distinguished, (figure 2(b)).

To elucidate the connection between the collapse and
revival in the qubit part of the Hilbert space and the peaks in
the Q(α, t) distribution depicted in figure 2 we recall briefly
the results of Meunier et al [20] obtained in the large n̄ limit.
Generalizing the one qubit result of Gea-Banacloche for the
two qubit case they found that |ψ(t)〉 can be written as a
superposition of Gea-Banacloche states described below.

|ψ(t)〉 =
1∑

k=−1

|Dk(t)〉 ⊗ |�k(t)〉 (8)

where k = −1, 0, or 1, |Dk(t)〉 is a state of the qubits and
|�k(t)〉 is the state of the field.

|D−1(t)〉 = 1
4 (e

−2i(ω− λ√
n̄
)t e−2iθ |ee〉 − e−i(ω− λ√

n̄
)t e−iθ

× (|eg〉 + |ge〉)+ |gg〉) (9)

|D 0(t)〉 = 1
2 (|gg〉 + e−2i(θ+π/2+ωt)|ee〉) (10)

|D 1(t)〉 = 1
4 (e

−2i(ω+ λ√
n̄
)t e−2iθ |ee〉 + e−i(ω+ λ√

n̄
)t e−iθ

× (|eg〉 + |ge〉)+ |gg〉) (11)

|�k(t)〉 = e−ikλ
√

n̄t |e−i(ω+k λ√
n̄
)t
α〉. (12)

The state of the field in each Gea-Banacloche state |Dk(t)〉 ⊗
|�k(t)〉 is one of three coherent field states |�k(t)〉, each of
which has a phase that evolves with a frequency given by
ω+k λ√

n̄
. Each field state corresponds to a particular qubit state

|Dk(t)〉, as given by equations (9)–(11). In particular, we note
that qubit state |D 0〉 corresponding to the field state |�0(t)〉 is
a superposition of |gg〉 and |ee〉 only, and has no components
of the states |ge〉 or |eg〉, a fact that we shall exploit to produce
our entanglement protocol.

The Gea-Banacloche states can be clearly seen in figure 2,
where the three ‘blobs’ represent the states |�k(t)〉, and we
see that the frequency at which these sub-distributions move
around the complex plane is determined by the frequencies
in equation (12). The well known collapse and revival
phenomena, seen in figure 1, can now be understood in terms
of the evolution of the Gea-Banacloche states. The Rabi
oscillations collapse when the field states are well separated

3
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Figure 2. Phase-space plots of the Q function for four different times, where the dimensionless x = α + α∗ represents the electric field and
y = (α − α∗)/i represents the magnetic field. Also plotted are white diamonds corresponding to the evolution of the field states in
equation (12). (a) t = π/(2ω): the phase space close to t = 0, when the peaks are not well separated, (b) t = 3π/(2ω): after a period of time
the sub-distributions, evolving with different frequencies, separate and can easily be distinguished, (c) t = tr/2: the time at which there is the
first occurrence of spontaneous revival, (d) t = tr: location of the states at the second main revival peak. For all the diagrams λ = ω = 1 and
n̄ = 200.

(figure 2(b)). At the large revival peak (figure 2(d)) all the
distributions overlap in the complex plane, which occurs when
all the field states are in phase. The time this occurs is
determined by the condition exp(iωt) = exp(i(ω+λ/√n̄)t) =
exp(i(ω − λ/

√
n̄)t). This condition is fulfilled by tr =

2π
√

n̄/λ. At an earlier time we observe a smaller revival peak,
when two of the states are in phase (figure 2(c)). This occurs
when exp(i(ω + λ/

√
n̄)t) = exp(i(ω − λ/

√
n̄)t), namely at

t = tr/2.
After gaining a clearer understanding of the physics by

taking the large-n̄ limit, we now return to our exact calculations
based on equation (4). Whilst the Q function shows a fuller
understanding of the state at a specific time, we shall study an
experimentally more accessible distribution defined as follows.
Evidently the eigenvalues of the operator x̂ = (a + a†) are
related to the position variable (electric field) of the harmonic
oscillator which describes the cavity mode. In order to analyse
the behaviour of this system as a function of time, we can plot
the corresponding x-distribution of the field state after we have
projected out the qubit states, i.e. we plot

Pr (x, t) = 〈x, r |ρ(t)|x, r〉 (13)

where r = gg, ee, eg, ge (figures 3(a)–(d)). A convenient
numerical method for obtaining this distribution is to project
out a particular qubit state, transform the density matrix into
the x-basis and take the diagonal elements. Obviously, the
finite number of basis states in the calculation will lead to
a discrete set of position eigenvalues xi for x̂ , and hence a
discrete set of probabilities Pr (xi , t), but this set of points can

be made sufficiently dense to form a probability density, as
given in equation (13).

Although the Q(α, t) function studied by Meunier et al
[20] gives a fuller account of the cavity field than the above
Pr (xi , t), nevertheless, as shown in figure 3, the latter also
captures the salient features of a very interesting quantum state
at hand. In the interest of clarity the pictures in figure 3 are at
the same times as the pictures in figure 2.

As in figures 2(a)–(d) we can see that although the
distributions initially overlap, they evolve with different
frequencies, so the peaks begin to separate (figure 3(b)). After
a period of time the distributions overlap and cause the two
revival peaks (figures 3(c) and (d))

3. Entanglement protocol

The basis behind the proposed entanglement procedure is a
measurement of the quantum field at some chosen time, which
projects the state of the two qubits into an interesting and
useful entangled state, heralded by the outcome of the field
measurement. In quantum optics the idea of measuring one
part of an entangled system to learn something about the
other goes back over twenty years [27, 28]. Measurement
of a coherent state entangled with a photon can be used to
project the photon state without absorption of the photon. In
our case there is a tripartite entangled system and projective
measurement of the coherent state is used to project the
remaining bipartite qubit system. The relevant measurement
is balanced homodyne detection, where the coherent state is

4
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Figure 3. The x-quadrature distribution of the field state after projecting out the qubits states r = |gg〉, |ee〉, |ge〉 + |eg〉/√2 for a series of
different times. The vertical lines indicate the location of the field states as given in equation (12). (a) t = π/(2ω): the x-distribution close to
t = 0, when the peaks are not well separated, (b) t = 3π/(2ω): after a period of time the sub-distributions, evolving with different
frequencies, separate and can easily be distinguished, (c) t = tr/2: the x-distribution at the first revival peak, (d) t = tr: the x-distribution at
the second main revival peak. The vertical lines indicate x(t) for harmonic oscillators with frequencies ω, ω ± λ/

√
n̄. For all the diagrams

λ = ω = 1 and n̄ = 200.

mixed with a strong local oscillator field on a 50:50 beam-
splitter before photo-detection of the two outgoing fields. It
is well known, e.g. [29], that in the strong local oscillator
limit the photon counting measurements made on the two
outgoing modes of the beam-splitter correspond to a projector
(e.g. |x〉〈x |) onto a chosen quadrature of the initial coherent
state field being measured, where the quadrature is set by the
chosen phase of the local oscillator field. As will be seen for
our system, at certain times a projection onto the x quadrature
of the field entangled with the qubits can leave the qubits in an
entangled state. For the case of superconducting qubits coupled
to a microwave field mode [30, 31] this requires homodyne
detection at microwave frequencies, rather than the familiar
beam-splitter and photo-detection systems employed at optical
frequencies. The mixing (of signal and local oscillator) and
detection at microwave frequencies, in order to project onto a
defined quadrature of a microwave coherent state field, may be
achievable through use of a single electron transistor (SET), as
has been discussed in detail in [32].

We stress that in our entanglement protocol, the idea
is to introduce, or turn on, the homodyne measurement
applied to the cavity field at some chosen time. This
would require some sort of fast (on the timescale of the
qubit/field evolution discussed in the previous section) opening
or gating of the cavity, to enable the microwave field to be
subject to measurement at a chosen time. Given the long
coherence times (or, correspondingly, high quality factors)
observed in superconducting qubit and microwave mode
experiments [12–14], we neglect decoherence in the field mode

and qubits prior to the measurement, but explicitly allow for
the decoherence of the actual measurement process, through
its projection of the state of the qubits and field.

So, taking homodyne measurement to act as a projective
measurement of x , our entanglement procedure is as follows.
At a given time t the x-quadrature measurement will give a
value of x taken from the distribution P(x, t) = ∑

r Pr (x, t).
Repeated observations would measure the whole distribution
P(x, t). Now if the peaks in Pr (x, t) are well separated
for different qubit states r , then the result of a single x-
measurement indicates which sub-distribution Pr (x, t) the
system is in, and thus the value of r for that single
measurement. Hence the qubit state r is conditioned on the
result of the measurement of x . If this state is an entangled
one then we have created an entangled state out of the
unentangled initial condition |gg〉 by making the measurement.
Furthermore, the creation of the entangled state, although
probabilistic, is heralded on the result of the x-measurement,
i.e. the result of the measurement tells us which peak of the
distribution we are in, and hence whether or not we were
successful in our attempt to create the state. Equations (8)–
(12) show that if the measurement result corresponds to the
field state |�0(t)〉, the qubit state will be a superposition of
the states |gg〉 and |ee〉, with a relative phase given by φ =
2(θ+π/2+ωt). Although this state is maximally entangled for
any given phase, a two qubit state with unknown phase has no
extractable entanglement and can be regarded as mixed. Thus
we specify a particular target state with a chosen phase and try
to produce this given state.

5
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Figure 4. Revival of the qubits’ initial state and the probability the
entanglement procedure is successful, Ps. The black curve shows the
probability that the qubits are in the state |gg〉, tracing over the
resonator. The (lighter) red curve shows the probability of obtaining
the state (|gg〉 + |ee〉)/√2 with a fidelity F � Fmin, Ps, as a function
of time. The vertical dashed lines indicate the revival and sub-revival
times at tr = 2π

√
n̄/λ and tr/2 respectively. We have chosen

λ = ω = 1, n̄ = 200 and a minimum fidelity Fmin = 0.9.

We would like to know how efficient this protocol is at
producing a given target state. We can ask this question in
the following way: if a projective measurement is made on
x , what is the probability that the state of the qubits after the
measurement will have a fidelity (given by F = |〈a|b〉|2 for
two pure states |a〉 and |b〉) greater than Fmin with our target
state? We call this value the probability of success, Ps.

Ps(t) =
∑

i

P(xi , t)�(F − Fmin) (14)

where �(F − Fmin) is zero for F � Fmin and unity for
F > Fmin. This criterion both allows us to specify how good
our state is and tells us how often the procedure works. In
figures 4 and 5Ps is plotted for the maximally entangled state
(|ee〉+|gg〉)/√2 as a function of time, with a minimum fidelity
Fmin = 0.9.

We find that Ps shows a series of flat-topped peaks as a
function of time, figure 4, occurring at twice the resonator
frequency ω, indicating that the there is a significant chance
that the measurement will produce the state (|ee〉 + |gg〉)/√2
twice every oscillation cycle. Note that the probability of
producing this state is quite large (close to 0.5) for a significant
period of time. We obtain the state (|ee〉 + |gg〉)/√2 when the
measurement of x corresponds to the peak with frequency ω
(the central peak in figure 3(b)). The peaks are most widely
separated at the time tr/4, but it is worth emphasizing that we
observe peaks in Ps close to 0.5 as soon as the peaks do not
overlap, i.e. at a much shorter time than the revival.

At other points in the oscillation cycle, the qubits will have
a different relative phase. In figure 5 we have also plotted
the probability of obtaining the states (|gg〉 + e−iφ |ee〉)/√2
with φ = 0, π,±π/2. We can therefore produce any of the
maximally entangled states of the form (|gg〉 + e−iφ |ee〉)/√2
by making the projective measurement at the appropriate time.

We might expect that as the phase is evolving
continuously, we would only get the desired target state at
instantaneous points in time. The fact that we can still get a
non-zero Ps for a finite time is due to two factors: firstly that the

Figure 5. The probability, Ps, of achieving a fidelity greater than 0.9
for target states of the form (|gg〉 + e−iφ|ee〉)/√2 with phases
0, π,±π/2. The coupling is given by λ = ω = 1, and n̄ = 200. The
curves all reach a constant value close to 0.5 for a finite period. The
value of exp(−iφ) = ±1,±i for the state produced is indicated
above each peak.

Figure 6. Full width at half maximum height for the Ps peak, as a
function of fidelity. The numerically calculated value for n̄ = 300
(light blue dashed line) is compared to the analytical form in
equation (15) (black line). We get good agreement between these
even for values of n̄ where the peak shows significant broadening
because the shape of the peak (figure 7) changes in such a manner
that the FWHM value is relatively unaffected.

states (|gg〉+e−iφ |ee〉)/√2 for different φ’s are not orthogonal,
and secondly that the coherent state has a finite size.

States with different values of φ are not in general
orthogonal. Of course, if we were to require that we obtain our
target state with unit fidelity, then we would expect to obtain
our target state only at a single moment in time, and indeed the
peaks in Ps get narrower as Fmin is increased. However, if we
choose an Fmin < 1 which we consider ‘good enough,’ then a
range of values of φ will have fidelity greater than this with the
target state. This leads to a simple trigonometric relationship
between the width of the peak in Ps and the desired fidelity,

t∞ = arccos(2Fmin − 1)

ω
, (15)

which is shown in figure 6. In the limit n̄ → ∞, we find
that Ps as a function of time is a series of top-hat functions
with a width given by equation (15) and a height of 0.5. The
projective measurement ‘perfectly’ produces a state of the form
(|gg〉+ e−iφ |ee〉)/√2 and the width of the peaks in Ps is solely
due to the finite overlap between this state and the target state.

For finite n̄ coherent states we see in figure 7 that the value
of Ps changes continuously, rather than as a top-hat function.
This smoothing is due to the fact that the coherent state has
a finite width. If the centre of the peak in the x-distribution
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Figure 7. The probability, Ps of achieving desired fidelity Fmin as a
function of time over one peak, plotted for coherent states with
n̄ = 300, 200, 100, 50, 25 (top to bottom). The two sub-plots show
Ps for different values of Fmin. For large coherent states and low Fmin

the peaks approach a top-hat form. For smaller coherent states or
larger Fmin the states become more rounded.

corresponds to the state (|gg〉 + e−iφ |ee〉)/√2 the leading and
trailing edges of the peak correspond to qubit states with phases
slightly above or below φ. This means that even when the
centre of the peak has a fidelity lower than Fmin, the leading
or trailing edge may have the target value of φ, leading to
peaks in Ps with a greater width, as can be seen in figure 7.
The difference in phase across the distribution also means that
when the centre of the peak has the desired phase, the edges
of the peak have the ‘wrong’ phase and Ps will be reduced
(observable as a reduction of the step height in figure 7). As
n̄ is increased, the difference in phase between the edges and
centre of the peaks disappears, so that for n̄ → ∞, the whole of
the peak corresponds to the exact state. Numerical calculations
indicate that the width of the peak is approximately given by
the ‘ideal’ width t∞, plus a term due to the finite size of the
coherent state,

tFWQM = K (Fmin)√
n̄

+t∞ (16)

where K (Fmin) is a constant that depends on Fmin.
There are some points in the evolution that do not lead

to a high value of Ps for any phase φ. This can be observed
in figure 5, where the peaks in Ps for the states with phases
φ = 0,±π/2 overlap (indicating a continuous change from
one state to the other), but Ps is zero for a finite period
between the peaks representing states with φ = π and ±π/2.
These periods, which occur four times a cycle, represent the
times when two of the x-distribution peaks overlap and so the
qubit state produced by the x-measurement is not of the form
(|gg〉 + e−iφ |ee〉)/√2.

In the limit of n̄ → ∞, the peaks in Ps are step functions
of height 0.5 with a width determined by equation (15), which
means we can achieve any desired fidelity with a probability of
close to 0.5 as long as we can measure x at an exact time. Of
course, we do not have instantaneous measurements, and so,
depending on the desired fidelity and the time resolution of the
measurement, it may be desirable to have a smaller coherent
state. As Fmin increases, we see that the width of the step
function decreases (figure 6), meaning that the measurement
must occur within an increasingly specific window in time.
If this becomes a limiting factor, it may be preferable to use
a smaller coherent state, increasing the window in which a

high fidelity state can be found at the expense of reducing
the probability of obtaining that state. An additional problem
in any real measurement will be imprecise in space as well
as time, i.e. the value of x returned by the measurement
is probabilistic. It is clear that if the imprecision in the
measurement is much smaller than the widths of the peaks in
the x-distribution, then the imprecision will have little effect,
and we can treat the measurement as projective. However,
we also find that as long as the imprecision is smaller than
the separation between peaks, the protocol still produces high
fidelity states, although the effect of finite n̄ in reducing the
fidelity becomes more pronounced.

It should also be noted that this technique can easily be
scaled up to entangle larger numbers of qubits. For larger
numbers of qubits the entanglement of the states created is not
as easy to quantify, and it may not be possible to couple them
to the resonator with equal strength, and so further research is
required in this area.

4. Conclusions

We have described a system of two qubits capacitively coupled
to a superconducting microwave resonator, and shown that we
can devise a protocol for heralded probabilistic production of
entangled states of the qubits. This method only requires an
initial preparation of the system in a product state of the qubit
ground states, a coherent state of the field in the resonator,
and the ability to perform a homodyne measurement on the
resonator. This protocol can produce states with a fidelity as
high as desired with a probability approaching 0.5 in the limit
of an infinitely large coherent state. We have shown that there
is a trade-off between the fidelity desired, the probability of
obtaining the desired state and the time window in which the
measurement must be performed. Choosing a smaller coherent
state increases the time window of measurement but reduces
the probability of obtaining the desired fidelity.

We have shown that this protocol is in some sense the dual
of the phenomenon of revival in that both cases rely on the fact
that we can regard the whole system as consisting of several
field coherent states for each qubit state, with the different field
states oscillating with different frequencies. Revival occurs
when the time evolution of these states at these frequencies
brings them all into phase with each other. In contrast the
entanglement protocol works best when the states are well
separated in phase.

Being based on measurement of a quantum mode, which
is coupled separately to both qubits, our approach to generating
entanglement contrasts with approaches where the two qubits,
although not interacting directly with each other, are both
coupled directly to the same measurement apparatus or
detector. A solid state qubit example of this is given by
Ruskov and Korotkov [33], for two quantum dots coupled to
a point contact, or two Cooper-pair boxes coupled to a SET.
Our entangling protocol also contrasts with approaches such
as that of Schneider and Milburn [34], where the common
resonator mode is both damped and driven for all times. In
such approaches feedback and control [32, 35], based on
homodyne measurement, can be utilized to enhance the results.
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It is possible that similar application of feedback could help
for our approach. However, even without any enhancement
over our present results, it should be noted that such high
fidelity, but probabilistic entanglement—heralded through the
measurement outcome—has good use in Quantum Information
Processing. Given the recent progress with superconducting
qubit experiments, initial investigations of such entangling
approaches should soon be possible. In the longer term,
probabilistic but heralded entanglement generation can be
used [36, 37] as a basis for efficient quantum computation
using the cluster state approach [38].
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